Fele 3A

Special Conditions for Brookhaven National Laboratory - Installation of Boiler #7 NYSDEC Permit to Construct

PRELIMINARY-DRAFT

I. Emission Limits.

1. Emission Point #00007.

Low NO, Burner

Emission Limits:

NO_x: 0.40 lbs/mmBTU and 58.80 lbs/hr CO: 0.043 lbs/mmBTU and 23.30 lbs/hr PM, PM₁₀: 0.08 lbs/mmBTU and 11.80 lbs/hr VOC: 0.034 lbs/mmBTU and 5.00 lbs/hr.

- 2. The sulfur content of the fuel burned in the boiler of emission point #7 shall not exceed 0.50 percent by weight.
- 3. The nitrogen content of the fuel burned at the facility shall not exceed 0.30 percent by weight.
- 4. All emission limits based on heat input correspond to the Higher Heating Value (HHV) of the fuel burned.
- 5. These limits apply at all loads of operation, except during periods of start-up and shutdown (not to exceed three hours per occurrence) and malfunctions (as stated in the paragraphs of subdivision 6NYCRR Part 201.5 (d)).
- 6. All emission limits are based on a one hour average.

II. Operating Limits.

- 1. Within 60 days of initial start-up, Emission Point #4 shall be physically inoperative.
- 2. Sitewide annual emissions will be limited to the following:

SO₂: 332.2 tons per year NO_x: 159.0 tons per year CO: 113.3 tons per year TSP: 49.2 tons per year PM₁₀: 35.7 tons per year VOC: 39.7 tons per year

Annual emissions are computed using the attached report and compliled on a quarterly rolling average basis. Exceedance of the annual limitation is considered a violation of the Federal Prevention of Significant Deterioation (PSD) regulations and will be cause for enforcement action.

III Testing Requirement

- 1. Stack testing for the emissions of NO_x , CO, PM, PM_{10} , and VOC's is required from emission Point #7, firing #6 residual oil at maximum firing rate.
- 2. All required stack testing must be performed and a report submitted to NYSDEC and USEPA within 180 days of initial start-up of the boiler, or within 60 days of commercial operation of the facility, whichever comes first. No extensions of this deadline will be granted by NYSDEC.
- 3. All testing must be done in accordance with protocols approved by NYSDEC in advance of testing. Protocols must be submitted for approval at least 60 days in advance of testing. NYSDEC must be provided with at least 30 days advanced notice of testing. Failure to notify or use approved protocols is grounds for rejection of such tests.

IV. Compliance Certification.

- 1. Continuous Emissions Monitoring (CEM).
- a. Prior to the date of commercial operation and thereafter, Brookhaven National Laboratory (BNL) shall install, calibrate, maintain, and operate a continuous monitoring and recording system to measure NOx and opacity in the boiler exhaust stack of emission point #7.
- b. These systems shall meet the requirements of 40 CFR 60 Appendix B and Appendix F and the NESCAUM Guidance Document for CEMS (September, 1990).
- c. Not less than 90 days prior to installation of the CEMs system, BNL shall submit to NYSDEC a Preliminary Monitoring Plan for the CEMs system. This plan must include a description of the CEM equipment, design specifications and the information required on page 26 of the NESCAUM guidance document. This plan is subject to NYSDEC approval.
- d. Not less than 90 days prior to the date of start-up of the boiler, BNL shall submit to NYSDEC a CEM Performance Test Protocol for the certification of the CEMs system. CEM performance testing may not begin until the protocol is approved by NYSDEC.

- e. BNL must notify NYSDEC 30 days in advance of the date upon which demonstration of the CEM system performance test will commence (40 CFR Part 60.13(c)). This date shall be no later than 60 days after the facility's start-up.
- f. BNL shall submit the CEM Certification Performance Test Report to NYSDEC within 30 days after completion of such test. This report is subject to NYSDEC approval.
- g. Within 90 days of NYSDEC approval of the CEM Certification Performance Test, BNL shall submit a CEMs Quality Assurance Plan to NYSDEC. This plan must meet the requirements of the NESCAUM guidance document. This plan is subject to NYSDEC approval.
- h. BNL shall submit a quarterly written CEM report to NYSDEC for every calendar year quarter. All quarterly reports shall be postmarked by the 30th day following the end of each calendar quarter and shall include:
- i. A summary of excess emissions and CEMs downtime reported in the format of Attachment A (or equivalent).
- ii. The results of the quarterly monitoring performance audit, reported in the format of 40 CFR 60 Appendix F (or equivalent).
- iii. Excess emissions shall be identified as any one-hour block period during which the average emissions of NOx or opacity, as measured by the CEM system, exceeds the corresponding mass or concentration emission limits set forth in Section I.1.
- iv. For the purposes of this permit, excess emissions indicated by the CEM system for one hour block periods other than start-ups and shutdowns, malfunctions (as stated in the paragraphs of subdivision 6NYCRR Part 201.5 (d)) and CEM calibrations may be considered violations of the applicable emission limits.
- i. BNL shall maintain a file of all measurements, including CEM system performance evaluations; all CEM systems or monitoring device calibration checks; adjustments and maintenance performed on these systems or devices; and all other information required by 40 CFR Part 60 recorded in a permanent form suitable for inspection. The file shall be retained for at least three years following the date of such measurement, maintenance, reports, and records.
- j. Within thirty (30) days of the effective date of this permit, the permittee shall send to the New York State Department of Environmental Conservation (NYSDEC), Room 602, 50 Wolf Road, Albany, New York 12233-11010, Attention: Ms. K. Mohan, a certified check payable to NYSDEC in the amount of \$20,000 to be placed in an account for the Departments' environmental compliance monitoring activities for the permitted facility. This amount will be used toward payment of the first year costs for such activities, which sum shall be subject to quarterly revision by the Department.

Page 3 of 5

Subsequent quarterly payments shall be made for the duration of this permit to provide an account balance sufficient to maintain the annual cost assessment.

Quarterly payments shall be made to the Department based on the following costs: (i) direct personal service costs and fringe benefits, including the cost of replacement personnel for the monitor position; (ii) direct non-personal service costs, including purchase or lease of a vehicle and its full operation costs; (iii) inflation and negotiated salary increases; and (iv) overhead and support costs at a calculated indirect cost rate based on a Federally approved plan.

Within thirty (30) days after receipt of a quarterly statement from the Department, the permittee shall forward the amount due to the address given above.

Upon termination of this permit and the payment of all outstanding costs, the unexpended balance will be returned to the permittee.

The Department may take appropriate action to enforce the payment provisions.

- 2. The boiler must comply with all parts of NSPS Subpart Db, including 60.43b, 60.44b, 60.45b, 60.46b, 60.47b, 60.48b and 60.49b requirements. Opacity from the boiler stack shall not be greater than 20% (6-minute average) except for one 6-minute period per hour of not more than 27% opacity.
- 3. NYSDEC reserves the right to inspect this facility as deemed necessary to determine compliance with this permit. Such inspections may be performed without prior notification by NYSDEC. Routine inspections will be made during reasonable business hours, however, NYSDEC reserves the right to enter the facility at any time if there is cause to believe that the facility is in non-compliance.

V. Record Keeping and Reporting.

- 1. Within ten (10) days after the end of a calendar quarter, the permit holder must submit a construction progress report to the attention of the Regional Air Engineer, Region 1, Stony Brook.
- 2. BNL must comply with the notification and record keeping requirements of 40 CFR 60.7 for the boiler. The major milestones of 40 CFR 60.7 are to notify USEPA and NYSDEC of construction and facility start-up.
- 3. BNL must monitor and record the type and amount of fuel burned in the boiler. Such data must be accurate to \pm 5%.

4. All copies of reports and notification required under this section must be submitted to the USEPA Region II Office and the NYSDEC Region 1 Office, with two copies sent to the NYSDEC Bureau of Application Review and Permitting in Albany. Unless stated otherwise, such reports or notification shall be submitted within thirty days after the end of each calendar year quarter. The addresses for the above offices are as follows:

NYSDEC Region 1 Office Attn: Mr. R. Capp Loop Road, Bldg 40 Stony Brook, NY 11790-2356

NYSDEC
Bureau of Application Review
and Permitting
50 Wolf Road
Albany, NY 12233

Director Air and Waste Management Division USEPA Region II 26 Federal Plaza New York, NY 10278

- 6. All records required by this permit must be kept at the facility for the three most recent years, and must be made available upon request of a NYSDEC authorized agent.
- 7. A summary of the emission limits and operating restrictions of this permit must be posted in the control room of the facility and must be plainly visible (without obstructions) to the operator of the facility. A copy of this summary shall be submitted to NYSDEC prior to facility start-up and is subject to NYSDEC approval.

VI. Compliance.

1. Any violation of the conditions of this permit is subject to penalty under Article 71 of the New York State Environmental Conservation Law.

Page 5 of 5

BROOKHAVEN NATIONAL _ BORATORY

CENTRAL STEAM FACILITY QUARTERLY AN SSEDNS REPORT

REPORT PERIOD: Qtr; Calendar Year			r		CCIONC T	THE DEF	NOD IN T	ONS L	
FUEL TYPES	~ · · · · · · · · · · · · · · · · · · ·	Fuel	Pounds		NOx [2]		TSP	The second secon	VOC
Grade No. 6 Low Sulfur (<1% S)		1							
Grade No. 4		I							
Grade No. 2 (Includes Diesel and Jet Fueis)	i	İ							
			1						
			:						
						· ·	•		
			<u> </u>					_	
Total 12 3101.7 This Period (Tons)									
Total Emissions Calender Year To Date (Tons)		- QUAR	45.7	145	150	102 [17 25 2	[4] 30.3 [4	11.0
Annual Allowable for PSD Non-Applicability (To	ons)			445	159	19.3	11 33.2	[4] 30.3 [4	4
Percent of Allowable To Date						<u></u>			

NOTES:

- [1] SO2 are based on mass balance of fuel burned and actual sulfur content by weight.
- [2] NOx are based on total of EPA AP-42 calculations for Boilers 1A, 4 and 5 and NOx CEMS readings for Boiler 6.
- [3] Quantities of these pollutants are based on the following Emissions Factors Per EPA AP-42 unless noted otherwise.
 - NOx Grades No. 4 and No. 6 = 55 lb/1000 gal

Grade No. 2 = 20 lb/1000 gal

- · CO All Grades @ 5 lb/1000 gal
- TSP Grade No. 6 = [10(%S) + 3] lb/1000 gal

Grade No. 4 = 7 lb/1000 gal

Grade No. 2 = 2 lb/ 1000 gal

• PM-10 - Grade No. 6 = 7.17[1.25(%S) + .38] lb/1000 gal

Grade No. 4 = 6.31 lb/1000 gai

Grade No. 2 = 1 lb/ 1000 gal.

VOC - Grade No. 4 and No. 6 = 0.28 lb/1000 gal

Grade No. 2 = 0.2 lb/1000 gal

[4] - Allowable quantities of these pollutants are "Good Faith es', and allowable quantities for PSD De Minimus increase are significantly higher per 40 CFR 52.21.

EER SCREENING REVIEW CHECKLIST

DANY.	YEAR:		
PANY:			
TION:	Date		
NUMBER:	REVIEWER:		
lutant: Applicable regulations in quarter: Hof non boiler operating days(Da/Db):	n(s):	•	
rs in quarter:	ours unit operated	monito	red:
of non boiler operating days(Da/Db):	ars.	mo	Targeting Crite
ssion Limits & Reduction Regmt(s)	Averaging	Time	EE'S CEMS AVA
ssion Limits			
EXCESS EMISSIONS: Total hrs(min):	s of monitor	ed oper	rating time:
Number of incidents of excess emissions:			
Days & reduction was not achieved:			Targeted?
Day - 1 1000000000000000000000000000000000			L
		T T	Compania
EXCESS EMISSIONS DUE TO:	Hours (Minutes)	•	Comments
Startup/shutdown			
Cleaning/sootblowing			
Control equipment failure		Maria Na	
Process problems	•		
Fuel problems	•		
Other known problems	•		
Unknown			
Other: (Descr)	•		
Other: (Descr)	•		
Other: (Descr)	•		
CEMS DOWNTIME: Total hrs/min:	s of source of	peratin	g time:
Number of CEMS downtime incidents:			
Number of invalid datadays (Da/Db):			Targeted?
	Hours (Minutes)		Comments
CEMS DOWNTIME DUE TO:	Hours (MINUTES)		
Monitor equipment malfunction			
Non-monitor equipment malfunction	•		
Quality assurance/calibration	•		
Other known problems	•		
Unknown			
Other (Descr)	•		
Other (Descr)	•		
Other (Descr)	•		
Other (Descr) Other (Descr) Other (Descr)	:		
Other (Descr)	:		Targeted?
Other (Descr) Other (Descr) Other (Descr)	:		Targeted?
Other (Descr) Other (Descr) Other (Descr) Reporting Deficiencies:			
Other (Descr) Other (Descr) Other (Descr)			
Other (Descr) Other (Descr) Other (Descr) Reporting Deficiencies:			

File 3A

New York State Department of Environmental Conservation 50 Wolf Road, Albany, New York 12233

Mr. Martin Fallier Department of Energy Brookhaven National Laboratory 53 Bell Avenue Upton, New York 11973

September 9, 1992

Dear Mr. Fallier,

Enclosed for your review are the Special Conditions for the Number 7 boiler permit. Copies have been sent to the Regional Office and the USEPA Region 2 for comments. The modeling analysis is being reviewed by our Impact Assessement Section. Issuance of the Permit to Construct is based on a satisfactory review of the modeling procedures.

After reviewing the correspondence between the Department of Energy and the New York State DEC, it is my understanding that the NO limit of 0.3 lbs/mmBTU established for boiler number 6 is unachievable at the current time. With the reductions for NO imminent in the near future, it is the department's decision to grant the NSPS emission limit of 0.4 lbs/mmBTU for boiler number 6 and 7 until the regulation is effective. This should allow your plant managers additional time to fine tune your equipment to meet the upcoming emission standards.

It should be noted that NO RACT regulations currently being promulgated will require NO reductions for all your boiler units greater than 50 mmBTU/hr. Please note that the facilty wide NO cap will be reduced accordingly.

In addition, upon further review of your emission calculations to determine an emission cap for SO₂, 1983-84 figures show the usage of 2% sulfur oils. Your facility was never allowed a sulfur content greater than 1% sulfur. Emission limits were calculated using 1% sulfur limits. The SO₂ emission cap will be 332.2 tons per year for the facility.

Please respond with your comments to Steven De Santis, Bureau of Application Review and Permitting, Albany, N.Y.

Steven De Santis

Environmental Technician 3

Bureau of Application Review and

Permitting

(518) 457 7688

cc. U. Roman, NYSDEC Region 1 D. Surpitski, Cental Office

S. Riva, EPA Region 2

SD/sd

TRANSMITTAL MEMO UNITED STATES ENVIRONMENTAL PROTECTION AGENCY REGION II

DATE: April 19, 1990

SUBJECT: PREVENTION OF SIGNIFICANT DETERIORATION OF AIR QUALITY (PSD)

Re: Brookhaven National Laboratories

FROM: Steven C. Riva, Chief

Air and Environmental Applications Section

Permits Administration Branch

TO: Addressees

Attached Please Find: Information utilized by NYSDEC in making its PSD

non-applicability determination

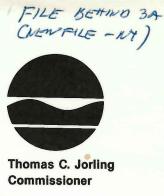
<u>Dated</u>: April 16, 1990

Company: NYSDEC

Signed by: James Harrington

Type of Review Required: PSD applicability

Start of Review Period: April 20, 1990


Submit Results to PAB: May 11, 1990

Special Instructions: None

Addressees: K. Eng, 2AWM-AC (Transmittal Letter)

cc: K. Mangels, 2AWM-AC (Entire Submittal)
File behind 3A (Entire Submittal)

New York State Department of Environmental Conservation 50 Wolf Road, Albany, New York 12233

April 16, 1990

Mr. Steve Riva, Chief
Air & Environmental Applications
Section
Permit Administration Branch
Office of Policy & Management
U. S. Environmental Protection
Agency - Region II
26 Federal Plaza
New York, New York 10278

Dear Mr. Riva: STEVE

As you requested, enclosed is a copy of the information used in making the PSD nonapplicability determination for the new (1985) boiler at Brookhaven National Laboratories. The applicant should be submitting compliance information regarding the NSPS in the near future.

If you have any questions regarding this information, please do not hesitate to call.

Sincerely,

Juna

James B. Harrington, P.E. Senior Sanitary Engineer Upstate Regional Support Section Division of Air Resources

Enclosure

cc: R. Capp

JBH:dd

Humberto Roman
Jim Harrington

SF Brookhaven National Laboratories, Boiler #6

March 9, 1990

I have completed my portion of the review of the application for the above. Based on the fuel use/emissions limitations specified in the attached Special Conditions. The installation is not subject to PSD. The new boiler is subject to NSPS Subpart Db. Special Conditions are included which include requirements of this regulation.

I have prepared a Notice of PSD Nonapplicability which must be published in the Environmental Notice Bulletin.

If you have any questions, do not hesitate to contact me.

cf Attachment

PSD Notice of Nonapplicability

Brookhaven National Laboratories has installed a 140 mmBTU/hr. oil-fired boiler at their facility in Upton, Long Island. This boiler replaced an existing oil-fired boiler. NYSDEC has reviewed this project to determine if it is subject to the Federal Prevention of Significant Deterioration (PSD) regulations codified at 40 CFR 52.21. NYSDEC has determined that this project is not subject to those regulations. Information relative to this determination is available for public inspection at the DEC Region 1 office, which is located at Bldg. 40, SUNY at Stony Brook, Stony Brook, NY 11790.

3/9/90 JBH:cf DRAFT: JBH:cf

3/8/90

SPECIAL CONDITIONS FOR BOILER #6

- 1. Emission of NO_X shall not exceed 0.30 lb/mmBtu and 44.1 lb/hr.
- 2. Continuous monitoring of emission of NO_X is required. The continuous monitor shall meet the requirements of 40 CFR 60 Appendix B or F. Equipment and location must be approved by DEC before installation. Records of data measured by these monitors must be kept for three years and made available upon request.
- 3. Stack testing for NO_X is required within 180 days of initial startup. Testing must be done using protocols approved by DEC in advance of testing. DEC must be provided with at least 30 days advance notice of testing. Failure to notify or use approved protocols is grounds for rejection of such tests.
- 4. Sitewide annual emissions of SO_2 and NO_X are limited to 445 tons and 159 tons, respectively. Annual emissions are computed using the attached report and compiled on a quarterly rolling average basis. Exceedance of the annual limitation is considered a violation of the Federal Prevention of Significant Deterioration (PSD) regulations and will be cause for enforcement action.

5. Brookhaven National Laboratories must comply with all applicable parts of NSPS Subpart Db, which applies to boiler number 6.

These requirements include the monitoring requirements specified in 40 CFR 60.47b and 40 CFR 60.48b.

BROOKHAVEN NATIONAL LABORATORY

CENTRAL STEAM FACILITY QUARTERLY AIR MISSIONS REPORT

REPORT PERIOD: Qtr; Calendar Year										
	% SULFUR	Fuel	Fuel	EMISSIONS THIS PERIOD IN TONS [3]						-
FUEL TYPES	By Weight	Gallons I	Pounds	SO2 [1]	NOx [2]	CO	TSP	PM-1	O VC	C
Grade No. 6 Low Sulfur (<1% S)				1		10.				
Grade No. 4										
Grade No. 2 (Includes Diesel and Jet Fuels)										
Total Enussions This Period (Tons)										
Total Emissions Galender Year To Date (Tons)	EAST FOOS	DURET	€57							
Annual Allowable for PSD Non-Applicability (To	ns)			445	159	19.3 [4]	35.2	1 30.3	41 1.0	[4]
Percent of Allowable To Date										

NOTES:

- [1] SO2 are based on mass balance of fuel burned and actual sulfur content by weight.
- [2] NOx are based on total of EPA AP-42 calculations for Boilers 1A, 4 and 5 and NOx CEMS readings for Boiler 6.
- [3] Quantities of these pollutants are based on the following Emissions Factors Per EPA AP-42 unless noted otherwise.
 - NOx Grades No. 4 and No. 6 = 55 lb/1000 gal
 Grade No. 2 = 20 lb/1000 gal
 - CO All Grades @ 5 lb/1000 gal
 - TSP Grade No. 6 = [10(%S) + 3] lb/1000 gal

Grade No. 4 = 7 lb/1000 gal

Grade No. 2 = 2 lb/ 1000 gal

• PM-10 - Grade No. 6 = 7.17[1.25(%S) + .38] lb/1000 gal

Grade No. 4 = 6.31 lb/1000 gai

Grade No. 2 = 1 lb/ 1000 gal

VOC - Grade No. 4 and No. 6 = 0.28 lb/1000 gal

Grade No. 2 = 0.2 lb/1000 gal

[4] - Allowable quantities of these pollutants are "Good Faith Viriles", actual allowable quantities for PSD De Minimus increase are significantly higher per 40 CFR 52.21.

JIM

Department of Energy

Brookhaven Area Office 53 Bell Avenue Upton, New York 11973

MAR 1 3 1990

Mr. Humberto Roman Division of Air Resources New York State Department of Environmental Conservation Building 40 - SUNY Stony Brook, New York 11794

SUBJECT: BROOKHAVEN NATIONAL LABORATORY (BNL) CERTIFICATES TO CONSTRUCT AND

OPERATE BOILER NO. 6

Reference: Letter to H. Roman of New York State DEC from J. Bellows of DOE,

BHO, dated February 26, 1990.

Dear Mr. Roman:

Mr. Jim Harrington of New York State DEC Central Office has requested additional information regarding reporting and verification of air emissions levels for Boiler #6 and the Central Steam Facility.

In subsequent discussions between Mr. Harrington and ENL, Mr. Harrington agreed that the following reporting commitment by ENL, submitted on a quarterly basis, would be satisfactory for verification of compliance as set forth in the referenced letter:

- 1. For verification of compliance with NSPS guidelines for NO_X of less that 0.4 lbs/ 10^6 Btu, Boiler No. 6 will be fitted with an approved NO_X continuous emissions monitoring system (CEMS). Reporting and recordkeeping will be in compliance with 40 CFR Section 60.49b.
- 2. For verification of compliance with PSD non-applicability for boiler modification of the Central Steam Facility (CSF), emissions data will be provided as indicated on the attached spreadsheet titled "BNL Central Steam Facility Quarterly Air Emissions Report". The basis of calculations performed for criteria pollutants CO, TSP, PM-10 and VOC will be actual fuel consumed applied to AP-42 emission factors. NO_X emissions will be calculated similarly except the component emitted by Boiler No. 6 will be the actual value recorded by the CEMS. SO₂ emissions will be calculated by mass balance of fuel consumed using sulfur content analysis data.
- 3. For purposes of tracking compliance, the report will indicate "Percent of Annual Allowable Emissions to Date" for each pollutant. In cases where this value approaches or exceeds the pro-rated quarterly percentage (i.e. SO₂ over 25% for the first quarter), BNL will provide an explanation and a description of corrective action to be taken.

.7 ,

1 :

It is our understanding that with this additional information the DEC will issue shortly the permit to construct (PC).

We would appreciate your expeditious review of the enclosed information. If you have any questions, please do not hesitate to contact us.

Sincerely,

Jerry L. Bellows Area Manager

Enclosure: BNL Central Steam Facility Quarterly Air Emissions Report

cc: J. Harrington, NYSDEC, w/encl.

A. Machlin, NYSDEC, w/encl.

M. Bebon, BNL, w/o encl.

R. Casey, BNL, w/o encl.

M. Fallier, BNL, w/o encl.

G. Kinne, BNL, w/o encl.

J. Medaris, BNL, w/o encl.

E. Murphy, BNL, w/o encl.

E. Rohrer, BNL, w/o encl.

B. Royce, BNL, w/o encl.

BROOKHAVEN NATIONAL LABORATORY

CENTRAL STEAM FACILITY QUARTERLY AIR EMISSIONS REPORT

REPORT PERIOD: Qtr; Calendar Year	o/ CIII EIID	% SULFUR Fuel Fue			CCIONC 3	THIC DE	DIOD IN	TO	NC I)1		
FUEL TYPES		By Weight Gallons Pound			EMISSIONS THIS PER SO2 [1] NOx [2] CO			TSP PM-10			vo	C
Grade No. 6 Low Sulfur (<1% S)												
Grade No. 4												
Grade No. 2 (Includes Diesel and Jet Fuels)												
Total Emissions This Period (Tons)												
Total Emissions Calender Year To Date (Tons)			A FIRM									
Annual Allowable for PSD Non-Applicability (To	ns)			445	159	19.3	4] 35.2	[4]	30.3	[4]	1.0	[4]
Percent of Allowable To Date												

NOTES:

- [1] SO2 are based on mass balance of fuel burned and actual sulfur content by weight.
- [2] NOx are based on total of EPA AP-42 calculations for Boilers 1A, 4 and 5 and NOx CEMS readings for Boiler 6.
- [3] Quantities of these pollutants are based on the following Emissions Factors Per EPA AP-42 unless noted otherwise.
 - NOx Grades No. 4 and No. 6 = 55 lb/1000 gal
 Grade No. 2 = 20 lb/1000 gal
 - CO All Grades @ 5 lb/1000 gal
 - TSP Grade No. 6 = [10(%S) + 3] lb/1000 gal

Grade No. 4 = 7 lb/1000 gal

Grade No. 2 = 2 lb/ 1000 gal

• PM-10 - Grade No. 6 = 7.17[1.25(%S) + .38] lb/1000 gal

Grade No. 4 = 6.31 lb/1000 gal

Grade No. 2 = 1 lb/ 1000 gal

VOC - Grade No. 4 and No. 6 = 0.28 lb/1000 gal

Grade No. 2 = 0.2 lb/1000 gal

[4] - Allowable quantities of these pollutants are "Good Faith Values", actual allowable quantities for PSD De Minimus increase are significantly higher per 40 CFR 52.21.

Department of Energy

Brookhaven Area Office 53 Bell Avenue Upton, New York 11973

February 26, 1990

Mr. Humberto Roman
Division of Air Resources
New York State Department of
Environmental Conservation
Building 40 - SUNY
Stony Brook, NY 11794

SUBJECT: BROCKHAVEN NATIONAL LABORATORY (BNL) -

CERTIFICATES TO CONSTRUCT AND OPERATE BOILER NO. 6

Dear Mr. Roman:

On February 13, 1990 we met with you and Messrs. Jim Harrington and Reggie Parker of the DEC central office, Bureau of Source Control, to discuss the procedure required to finalize and obtain subject certificates for Boiler No. 6. Mr. Harrington requested that we supply some further information on the project. The requested materials are attached:

- 1. Actual air emission calculations from all existing boilers using, per our agreement, the two-year average (1983/1984) prior to construction of Boiler No. 6 (Attachment 1).
- 2. Completed PSD Applicability Determination Form from Air Guide-12 and summary Table 3, Determination of PSD non-applicability for the BNL Boiler Plant Modification (Attachment 2).
- 3. Federal NSPS applicability review for Boiler No. 6. BNL will comply with the NSPS requirements of 0.40 lb NO per million BTU heat input including performance test. NO monitoring and reporting/recordkeeping requirements (Attachment 3).

It is BNL's understanding that with this additional information the DEC will issue shortly the Permit to Construct (PC). BNL further understands that after the PC is issued, the NO emission performance test will be performed on Boiler No. 6. Following a successful performance test, the DEC will issue the Certificate to Operate (CO) Boiler No. 6.

E. P. Rohrer, BNL G. Kinne, BNL M. J. Bebon, BNL R. Casey, BNL M. Fallier, BNL J. B. Medaris, BNL E. T. Murphy, BNL B. Royce, BNL

ATTACHMENT 1

BROOKHAVEN NATIONAL LABORATORY CENTRAL STEAM AND OTHER BOILER FACILITY EMISSIONS

The attached calculation Tables 1 and 2 show the annual SO₂ emissions from the Brookhaven National Laboratory (BNL) Boiler Facility to be 392 and 420 tons per year (TPY) for Fiscal Years 1983 and 1984, respectively. The two year average SO₂ emission is 406 TPY. The following air emission calculations for the remaining criteria pollutants are based on the actual fuels burned in 1983/1984 (shown in Tables 1 and 2) and AP-42 emission factors for fuel oil combustion in industrial boilers burning residual and distillate fuel oils (10/86). The 1983/1984 annual average quantity of fuels burned at the BNL Boiler Facility are as follows:

High Sulfur (2%) No. 6 Oil (Includes = 626,490 gal/yr

Reconstituted and Navy Special)

Low Sulfur (1%) No. 6 Oil =1,793,426 gal/yr

No. 4 Oil (Includes Reconstituted =1,160,202 gal/yr

and Marine Diesel)

No. 2 Oil (Includes Mineral Spirits =2,152,095 gal/yr

and Jet Fuel)

TOTAL 5,732,213 gal/yr

PARTICULATE MATTER (PM) EMISSIONS

Grade 6 Oil = $10(S) + 3 lb/10^3 gal$

=
$$\frac{[10(2) + 3]lb}{10^5 gal}$$
 x $\frac{626,490 gal}{yr}$ + $\frac{[10(1) + 3]}{10^5 gal}$ x $\frac{1,793,426 gal}{2000}$ = 18.9 TPY

Grade 4 Oil =
$$\frac{7 \text{ lb}}{10^3 \text{ gal}} \times \frac{1,160,202 \text{ gal}}{2000} = 4.1 \text{ TPY}$$

Grade 2 Oil =
$$\frac{2 \text{ lb}}{10^5 \text{ gal}} \times \frac{2,152,095 \text{ gal}}{2000} = \frac{2.2 \text{ TPY}}{2.2 \text{ TPY}}$$

TOTAL PM = 25.2 TPY

PM-10 EMISSIONS

Grade 6 Oil

$$= 7.17[(1.25(2) + .38)(626.49) + (1.25(1) + .38)(1,793.4)]/2000 = 16.9 \text{ TPY}$$

Grade 4
$$0il = 7.17(.88)(1160.2)/2000 = 3.7 TPY$$

Grade 2 Oil =
$$\frac{1 \text{ lb}}{10^5 \text{ gal}} \times \frac{2152 \times 10^3 \text{ gal}}{\text{yr}} = \frac{1.1 \text{ TPY}}{\text{spherical results}}$$

TOTAL PM-10 = 21.7 TPY

CARBON MONOXIDE EMISSIONS

All Grades =
$$\frac{5 \text{ lb}}{10^3 \text{ gal}} \times \frac{5,732,213 \text{ gal}}{\text{yr}} = 14.3 \text{ TPY}$$

NITROGEN OXIDE EMISSIONS

Grades 4 and 6 Oil =
$$\frac{55 \text{ lb}}{10^3 \text{ gal}} \times \frac{3,580,118 \text{ gal}}{2000} = 98.5 \text{ TPY}$$

Grade 2 Oil =
$$\frac{20 \text{ lb}}{10^3 \text{ gal}} \times \frac{2,152,095 \text{ gal}}{2000} = \frac{21.5 \text{ TPY}}{10^3 \text{ gal}}$$

TOTAL NO_x =120.0 TPY

NONMETHANE VOLATILE ORGANIC COMPOUNDS (VOC)

Grades 4 and 6 Oil =
$$0.28 \text{ lb} \times 3,580,118 \text{ gal}/2000$$
 = 0.5 TPY
 $10^{3} \text{ gal} \text{ yr}$

Grade 2 Oil =
$$\frac{0.2 \text{ lb}}{10^5 \text{ gal}} \times \frac{2,152,095 \text{ gal}}{2000} = \frac{0.2 \text{ TPY}}{2000}$$

TOTAL VOC = 0.7 TPY

TABLE 1

BROOKHAVEN NATIONAL LABORATORY

Calculation of Annual SO2 Emissions

FY 1983

Fuel	Gal Burned	Sulfur	lb/gal	Btu/gal	Total Fuel (lb/yr)	Total Btu/yr	Total S (lb/yr)
Central Steam Facility							
Low Sulfur No. 6 Oil	2,004,482	1.0%	8.2	148,000	16,436,752	2.97E+11	164,368
High Sulfur No. 6 Oil	. 0	2.0%	8.2	150,000	0	0.00E+00	0
Mineral Spirits	823,506	0.1%	6.5	120,000	5,352,789	9.88E+10	5,353
"Reconstituted No. 6" Oil	310,844	2.0%	8.2	145,000	2,548,921	4.51E+10	50,978
Navy Special ·	165,503	2.0%	8.2	150,000	1,357,125	2.48E+10	27,142
Alcohol	. 0	0.0%	6.7	75,000	0	0.00E+00	0
Marine Diesel	675,328	1.5%	7.2	142,000	4,862,362	9.59E+10	72,935
Jet Fuel	1,044,155	0.2%	6.8	125,000	7,100,254	1.31E+11	14,201
"Reconstituted No. 4" Oil	287,882	2.0%	7.7	142,000	2,216,691	4.09E+10	44,334
Other	0	1.0%	7.7	142,000	0	0.00E+00	0
Total CSF	5,311,700				39,874,894	7.33E+11	379,311
Other Boilers							
No. 4 Fuel Oil	145,054	1.0%	7.7	142,000	1,116,916	2.06E+10	11,169
No. 2 Fuel Oil	75,491	0.3%	7.2	138,000	543,535	1.04E+10	1,631
Total Other	220,545				1,660,451	3.10E+10	12,800
Site Totals	5,532,245				41,535,345	7.64E+11	392,111
Total Site SO2 Emissions							392 Tons/yr
Average S in Fuel by Wgt.	1						0.9%

TABLE 2

BROOKHAVEN NATIONAL LABORATORY

Calculation of Annual SO2 Emissions

FY 1984

Fuel	Gal Burned	Sulfur	lb/gal	Btu/gal	Total Fuel (lb/yr)	Total Btu/yr	Total S (lb/yr)
Central Steam Facility							
Low Sulfur No. 6 Oil	1,582,369	1.0%	8.2	148,000	12,975,426	2.34E+11	129,754
High Sulfur No. 6 Oil	347,664	2.0%	8.2	150,000	2,850,845	5.21E+10	57,017
Mineral Spirits	858,673	0.1%	6.5	120,000	5,581,375	1.03E+11	5,581
"Reconstituted No. 6" Oil	236,071	2.0%	8.2	145,000	1,935,782	3.42E+10	38,716
Navy Special	192,897	2.0%	8.2	150,000	1,581,755	2.89E+10	31,635
Alcohol	0	0.0%	6.7	75,000	0	0.00E+00	0
Marine Diesel	852,604	1.5%	7.2	142,000	6,138,749	1.21E+11	92,081
Jet Fuel	1,405,672	0.2%	6.8	125,000	9,558,570	1.76E+11	19,117
"Reconstituted No. 4" Oil	216,322	2.0%	7.7	142,000	1,665,679	3.07E+10	33,314
Other	0	1.0%	7.7	142,000	0	0.00E+00	0
Total CSF	5,692,272				42,288,181	7.80E+11	407,215
Other Boilers							
No. 4 Fuel Oil	143,214	1.0%	7.7	142,000	1,102,748	2.03E+10	11,027
No. 2 Fuel Oil	96,693	0.3%	7.2	138,000	696,190	1.33E+10	2,089
Total Other	239,907				1,798,937	3.37E+10	13,116
Site Totals	5,932,179				44,087,118	8.14E+11	420,331
Total Site SO2 Emissions						<i>I</i> ,	420 Tons/yr
Average S in Fuel by Wgt.							1.0%

				Appendix	111			SIC no.
		PS.	D Appli	cability	Determ	ination	1	
Facility Name	Brook	haven I	Nationa	Labora	tory			
Address 53 B	Bell Aven	ue, Up	ton, N.Y	11973				
FACILITY								:
	Tal	ole A:	Facil	ity Emis	sions S	ımmarv	(T/Yr)	
	TS		so,	CO	NO _x	VOC	Pb	
Current Emiss:	ions 25	5.2	406	. 14.3		0.7		
Net change this modificat		0.0	39	5.0	39	0.3		
New Emissions L. Any attai	Total	. 2	445	19.3	159	1.0		*
2. Is facili	ty liste	d as o	ne of 2	8 major nt pollu	source	categor	x no ries? yes ries? yes ries.	
2. Is facili 3. If yes to	#2, are	any and as o	ne of 2 ttainment	8 major nt pollu s <u>MAJOR</u>	source	categor	ies? yes_	
2. Is facili 3. If yes to If yes to SOURCE	#2, are #1 or #3	any	ne of 2 ttainment ility in new sou	8 major nt pollu s <u>MAJOR</u>	source tants for PSD	100 T	ies? yes; :/Y? yes;	
2. Is facili 3. If yes to If yes to SOURCE	#2, are #1 or #3	any	ne of 2 ttainment ility in new sou	8 major nt pollu s MAJOR urce(s)	source tants for PSD	100 T	ries? yes; c/Y? yes; es.	
2. Is facili 3. If yes to If yes to SOURCE Descripti A Ontaminant Le	#2, are #1 or #3 on of pro	any and any	ne of 2 ttainment ility in new sou	8 major int pollu s MAJOR urce(s) lons from	source tants for PSD m Propos	100 T purpos sed Sou	ries? yes	× no
2. Is facilif 3. If yes to If yes to SOURCE Descripti A Descripti	#2, are #1 or #: on of pro Tab B eminimis evel	any and any	ne of 2 ttainmentality in the source	8 major int pollu s MAJOR urce(s) lons from	source tants for PSD m Propos	100 T purpos sed Sou D ded Anne	ries? yes	E ons D>1

If yes, describe on back of page and indicate modified annual emissions on

' If the facility is MAJOR for PSD purposes, the new source IS SUBJECT to PSD

Is source subject to PSD? 'yes_

for the pollutants indicated on Column E.

Column D. .

TABLE 3

DETERMINATION OF PSD NON-APPLICABILITY

BROOKHAVEN NATIONAL LABORATORY BOILER PLANT MODIFICATION

				EMISSIO	NS (TONS/Y	EAR)	
		SO ₂	NO _x		TSP	PM-10	VOC
1.	Emissions from Existing Boilers for 1983/1984	406	120	14.3	25.2	21.7	0.7
2.	Potential Enforceable Emissions from Boiler Modifications	445	159	19.3	35.2	30.3	1.0
3.	Net Potential Emissions Increase	39	39	5.0	10.0	8.6	0.3
4.	PSD De Minimus Increase (40 CFR 52.21)	40	40	100.0	25.0	15.0	40.0
5.	PSD Applicable	ИО	NO	МО	NO	NO	NO

APPLICABILITY ANALYSIS OF FEDERAL NSPS TO BROOKHAVEN NATIONAL LABORATORY BOILER NO. 6

The following is based on a review of 40 CFR Part 60 - Standards of Performance for New Stationary Sources, Revised as of July 1, 1989.

Subpart Db - Standards of Performance for Industrial - Commercial - Institutional Steam Generating Units apply, according to Section 60.40b, to each steam generating unit that commences construction after June 19, 1984 and that has a heat input capacity greater than 100 million Btu/hour. "Construction" is defined in Section 60.1 as fabrication, erection, or installation of an affected facility. "Commenced" is defined as the undertaking of a continuous program of construction or the entering into a contractual obligation to undertake and complete a continuous program of construction. BNL entered into a contractural obligation with the Boiler No. 6 manufacturer (CE) on November 20, 1984 thus Subpart Db applies because construction of Boiler No. 6 commenced after June 19, 1984.

Section 60.40b(b)(3) states that oil-fired units which commenced construction after June 19, 1984, but before June 19, 1986 and whose heat input capacity is between 100 and 250 million Btu/hour (i.e. BNL Boiler No. 6) are only subject to the NO_x standards. This is because the standards of performance limiting emissions of

NO_x from oil-fired boilers were first promulgated by EPA on November 25, 1986 (51 FR 42768). At that time oil-fired boilers were not subject to particulate matter (PM) or SO₂ emission limits. PM emission standards from oil-fired boilers and SO₂ emission standards from coal-and oil-fired boilers were subsequently proposed by EPA on June 19, 1986 (51 FR 22384) and promulgated on December 16, 1987 (52 FR 47826). For this reason, the BNL oil-fired Boiler No. 6 is only subject to the November 25, 1986 promulgated performance standards which cover only NO_x.

Section 60.44b(a) requires that oil-fired boilers be limited to the following $\mathrm{NO}_{\mathbf{x}}$ emissions:

Distillate Oil (No. 1 & No. 2 with less than 0.05%N)

Low heat release rate boiler $0.10 \text{ lb/}10^6 \text{ Btu}$ High heat release rate boiler $0.20 \text{ lb/}10^6 \text{ Btu}$

Residual Oil (No. 1 & No. 2 with more than 0.05%N and No. 4, 5 and 6)

Low heat release rate boiler $0.30 \text{ lb/}10^6 \text{ Btu}$ High heat release rate boiler $0.40 \text{ lb/}10^6 \text{ Btu}$

Section 60.41b defines "heat release rate" as the boiler design heat input capacity (Btu/hour) divided by the furnace volume (cubic feet); the furnace volume is that volume bounded by the front furnace wall where the burner is located, the furnace side waterwall, and extending to the level just below or in front of the first row of convection pass tubes. "High heat release rate" is defined as a heat release rate of 70,000 Btu/hour-ft³ or more. The BNL Boiler No. 6 heat release rate is calculated as follows:

 $147 \times 10^6 \text{ Btu/hour} = 70,402 \text{ Btu/hour-ft}^3$ 2088 ft³

Thus the BNL Boiler No. 6 has a high heat release rate (i.e. more than 70,000 Btu/hour-ft³) and the applicable Federal NSPS is therefore 0.40 lb NO_x per million Btu heat input. The Boiler No. 6 was purchased with low-NO_x burners with a guaranteed NO_x emission limit of 0.30 lb per million Btu which is below the applicable NSPS.

With regard to performance test, Section 60.46b(e)(1) requires an initial compliance test using the continuous NO_x monitor for 30 successive steam generating unit operating days and use of the 30-day average emission rate. BNL agrees to do the required NO_x performance test on Boiler No. 6. If the residual oil being burned

in Boiler No. 6 has more than 0.30%N, then continued determination of NO_x emission compliance on a continuous basis using a 30-day rolling average is required. If the residual oil has less than 0.30%N, then repetition of the initial performance test is done only upon DEC's request.

Regarding emission monitoring for NO_x , if the oil being burned in Boiler No. 6 has less than 0.3% Nitrogen, Section 60.48b(b) provides an exception to continuous NO_x monitoring under paragraph (g). Section 60.48b(g)(2) states that monitoring of the steam generating unit operating conditions and predicting NO_x emission rates as specified in a plan submitted pursuant to Section 60.49b(c) is permitted in lieu of continuous NO_x monitoring.

BNL believes that the oil being burned in Boiler No. 6 has less than 0.3%N, but until this is confirmed by oil analysis, a continuous emission monitoring system (CEMS) will be installed on Boiler No. 6 in accordance with all applicable DEC and EPA requirements (i.e. 40 CFR 60 Section 60.48b and Appendices B and F). Similarly, BNL will comply with the reporting and record keeping requirements of Section 60.49b.

OP LOCATION FACILITY EMISSION POINT | 47 2 2 0 0 3 4 9 16 1 0 0 6 C

NEW YORK STATE
DEPARTMENT OF ENVIRONMENTAL CONSERVATION

COPIES

WHITE - ORIGINAL

BLUE - DIVISION OF AIR

WHITE - REGIONAL OFFICE

WHITE - FIELD REP.

YELLOW - APPLICANT

A ADD
C CHANGE
D DELETE

READ INSTRUCTIONS
CONTAINED IN
FORM 76-11-4
BEFORE ANSWERING
ANY QUESTION

STATIONARY COMBUSTION INSTALLATION

APPLICATION FOR PERMIT TO CONSTRUCT OR CERTIFICATE TO OPERATE

5	1. NAME OF OWNER/FIRM U. S. Department of	Energy	9. NAME OF AUTHORIZED AGEN Gerald C. Kinne	т	10. TELEPHONE (516) 282-3711	19. FACILITY NAME (IF DIFFER Brookhaven Natio	
E	2. NUMBER AND STREET ADDRESS		II. NUMBER AND STREET ADDRE	ESS	202 3711	20. FACILITY LOCATION (NUMBE	ER AND STREET ADDRESS)
C	53 Bell Avenue		40 Brookhaven Ave			53 Bell Avenue	22. Zir
7	3. CITY - TOWN - VILLAGE	4. STATE 5. ZIP	12. CITY - TOWN - VILLAGE	13. STATE	14. ZIP	Upton	11973
0	Upton	NY 11973	Upton	NY	11973	23. BUILDING NAME OR NUMBER	R 24. FLOOR NAME OR NUMBER
N	6. OWNER CLASSIFICATION E.	STATE H. HOSPITAL	15. NAME OF P.E. OR ARCHITECT PREPARING PLANS	OR ARCHITECT	17. TELEPHONE	Building 610	First
	A. COMMERCIAL C. UTILITY F. B. INDUSTRIAL D. T. FEDERAL G.		B. Levy, P. E.	N.Y.P.E. 58756	(212) 290–6864	MO/YR	VING NUMBERS OF PLANS SUBMITTED
A	7 NAME & TITLE OF OWNERS REPRES Jerry L. Bellows Area Manager	8, TELEPHONE (516) 282-3424	APPLYING FOR A PERMIT TO	RESENTATIVE OR AG	SENT WHEN	27. PERMIT TO CONSTRUCT A. NEW SOURCE B. MODIFICATION	28. CERTIFICATE TO OPERATE A. NEW SOURCE C. EXENSTING B. MODIFICATION
c		31. HEIGHT ABOVE 32. STACK		35. EXIT 36. EXI	T 37. HEAT	38 CONTINUOUS A CON	-VV
SE C.	POINT ID. ELEVATION (FT.)	STRUCTURES HEIGHT (FT.)	DIMENSION(S) TEMPERATURE (IN.) (°F)	VELOCITY FLO (FT./SEC.) (ACF	W INPUT	38.CONTINUOUS MONITOR(S)	PACITY DE OXYGEN ULFUR DIOXIDE EXT CARBON DIOXIDE
B.	6 1 0 0 6 77	17 62	60 350	34 39,50	00 147		ITROGEN OXIDES AND OTHER CO
	39. UNIT TYPE 40. UNIT MANUFACT	URER'S NAME AND MODEL NU	JMBER		41	. UNIT HEAT INPUT 42. AIR	INTAKE 43, SOURCE CODE
	01 Combustio	on Engineering 28-A-	-14			147	3 7320
S	44. BURNER TYPE 45. NO. OF BURNERS	46. BURNER MANUFACTURER'S NA	ME AND MODEL NUMBER	47. FUEL		QUANTITY 49 MAX. QUA	
C	52/53 2	Coen 495S/CPF24		36		470 105	
<i>T</i>	51. HRS./DAY 52. DAYS/YEAR 53	% OPERATION BY SEASON ter Spring Summer Fall	54. NAME OF SUPPLIER (S)	•			Continue of the Continue of th
0	24 215 0		Hess Oil Compa	ny			
N	55. BURNER TYPE 56. NO. OF BURNERS 5	7. BURNER MANUFACTURER'S NAM	ME AND MODEL NUMBER	58. FUEL		QUANTITY 60. MAX. QU. FUEL/HR OF FUEL	
С	62. HRS./DAY 63. DAYS/YEAR 64. Wint		65. NAME OF SUPPLIER(S)		1		
5	EMISSION CONTROL MANUE	FACTURER'S NAME AND MODEL	NUMBER			DISPOS	SAL DATE USEFUL

D = 13 TDS/TOOD gar. N = 41 lbs/1000 gal.Q = (470 gal/hr)(C)(E)(K) = Emissions in lbs/hrE = retention factor = 1C = contaminant concentrationby weight fraction K = 7.5 lbs/gal.Annual emissions = Q (24 hrs/day)(215 days/year) TO BE COMPLETED FOR ALL SOURCES USING ITEM 27 AND OTHER SOURCES AS DEFINED IN THE INSTRUCTION FORM 76-11-4 HOURLY EMISSIONS (LBS/HR) ANNUAL EMISSIONS % CONTROL **EMISSIONS** CONTAMINANT (LBS/YR) SECT HOW DET. 10X PERMISS. **EFFICIENCY** ACTUAL AC"UAL ACTUAL PERMISS. CAS NUMBER UNIT NAME 85. 84. 4 NY075-00-0 TOTAL PARTICULATES 0.2 93. 89. 7446 - 09-5 SULFUR DIOXIDE 0 102.0.3 106. 100. NY210-00-0 NITROGEN OXIDES 118. 122 DATE Upon completion of construction sign the statement listed below and forward to the appropriate field representative THE STATIONARY COMBUSTION INSTALLATION HAS BEEN CONSTRUCTED AND WILL BE OPERATED IN ACCORDANCE WITH STATED SPECIFICATIONS AND IN CONFORMANCE WITH ALL PROVISIONS OF EXISTING REGULATIONS. 139. DATE APPL. RECEIVED 140. DATE APPL. REVIEWED 141 138. SIC NUMBER 135, FACILITY ID. NO. 136. U.T. M. (E) 137. U.T.M. (N) 134 LOCATION CODE G 146. CONSTRUCT DEVIATION FROM APPROVED APPLICATION SHALL VOID THIS PERMIT THIS IS NOT A CERTIFICATE TO OPERATE 142. DATE ISSUED 143. EXPIRATION DATE 144. SIGNATURE OF APPROVAL 145. FEE TESTS AND/OR ADDITIONAL EMISSION CONTROL EQUIPMENT MAY BE REQUIRED PRIOR TO THE ISSUANCE OF A CERTIFICATE TO OPERATE 151. RECOMMENDED ACTION RE: C.O. DATE. 1. INSPECTED BY_ 2. INSPECTION DISCLOSED DIFFERENCES AS BUILT VS. PERMIT, CHANGES INDICATED ON FORM 147. DATE ISSUED 148. EXPIRATION DATE 149 SIGNATURE OF APPROVAL 150. FEE E ISSUE CERTIFICATE TO OPERATE FOR SOURCE 4. APPLICATION FOR C.O. DENIED DATE INITIALED 152. SPECIAL CONDITIONS: 2.

		Appendix		51	C no
	P	PSD Applicability			
acility N	ame Drook	never National L	aboratory		2
ddress			- 92	1	/
ACILITY			- 93 ×	PATING 25	
	Ta	ble A: Facility Emis	sions Summary (T/	Yr)	
	T	sp so ₂ co	NO VOC	Pb	
urrent Emi	issions 2	19 44 13			
et change is modifi	cation	-			:
		5 39 87	36 1·3 165 2		ж.
w Emissio	ns Total 4	4 450 100	165 2		
Any at	tainment no	listante cumposales	250 7/42 1/		
	po	llutants currently	230 1/11 yes V	10	
Is fac	ility liste	d as one of 28 major any attainment pollu	source categories	s? yes V no	
Is fac If yes If yes	ility liste to #2, are to #1 or #	d as one of 28 major any attainment pollu 3, facility is MAJOR: oposed new source(s)	source categories tants 100 T/Y:	s? yes √ no	
Is fac If yes If yes	ility liste to #2, are to #1 or #	d as one of 28 major any attainment pollu 3, facility is MAJOR	source categories tants 100 T/Y:	s? yes √ no	
Is fac If yes If yes URCE	ility liste to #2, are to #1 or #	d as one of 28 major any attainment pollu 3, facility is MAJOR: oposed new source(s)	source categories tants 100 T/Y:	s? yes √ no	
Is fac If yes If yes URCE Descrip	ility liste to #2, are to #1 or # ption of pr Tai B	d as one of 28 major any attainment pollu 3, facility is MAJOR poposed new source(s) ble B: Emissions from C Annual Emissions	source categories tants 100 T/Y: for PSD purposes. Proposed Source D	yes V no	E
Is fac If yes If yes URCE Descrip	ility liste to #2, are to #1 or # ption of pro Tai B Deminimis Level	d as one of 28 major any attainment pollu 3, facility is MAJOR poposed new source(s) ble B: Emissions from C Annual Emissions at 8760 Hr/Yr	source categories tants 100 T/Y: for PSD purposes. Proposed Source D Modified Annual after netting as	yes / no	E
Is fac If yes If yes URCE Descrip	ility liste to #2, are to #1 or # ption of pr Tai B	d as one of 28 major any attainment pollu 3, facility is MAJOR poposed new source(s) ble B: Emissions from C Annual Emissions	source categories tants 100 T/Y: for PSD purposes. Proposed Source D Modified Annual	yes / no	E D>B
Is fac If yes If yes URCE Descrip	to #2, are to #1 or # ption of pr Tai B Deminimis Level (T/Y)	d as one of 28 major any attainment pollu 3, facility is MAJOR poposed new source(s) ble B: Emissions from C Annual Emissions at 8760 Hr/Yr	source categories tants 100 T/Y: for PSD purposes. Proposed Source D Modified Annual after netting as (T/Y)	yes / no	E D>B
Is fac If yes If yes URCE Descrip	to #2, are to #1 or # ption of pro Tal B Deminimis Level (T/Y)	d as one of 28 major any attainment pollu 3, facility is MAJOR poposed new source(s) ble B: Emissions from C Annual Emissions at 8760 Hr/Yr	source categories tants 100 T/Y: for PSD purposes. Proposed Source D Modified Annual after netting as (T/Y) 39	yes / no	E D>B
Is fac If yes If yes URCE Descrip A A A A A A A A A A A A A	to #2, are to #1 or # ption of pro Tai B Deminimis Level (T/Y) 40 25	any attainment pollu 3. facility is MAJOR poposed new source(s) ble B: Emissions from C Annual Emissions at 8760 Hr/Yr (T/Y)	source categories tants 100 T/Y: for PSD purposes. Proposed Source D Modified Annual after netting as (T/Y) 39 36	e? yes V no	E D>B Y/N
Is fac If yes If yes URCE Descrip A It aminant Oo SP Is netting	to #2, are to #1 or # ption of pr Tai B Deminimis Level (T/Y) 40 25 ng availabl	d as one of 28 major any attainment pollu 3, facility is MAJOR poposed new source(s) ble B: Emissions from C Annual Emissions at 8760 Hr/Yr	source categories tants 100 T/Y: for PSD purposes. Proposed Source D Modified Annual after netting as (T/Y) 39 36 Are special cond	Emissions and SC	E D>B Y/N

AIR CHITDE-12 Continued

Is source subject to PSD? 'yes

100 100

BROCKHANEN NATE CABS [Z-13-90]
New Boiler -
New BOILER - 7 (OEN LONDY BURNERS)
will occept permit condition-
BRACECINE IS 406 T/Y — FUEL USG IS 83-84.
#5 - WINTER
#6 = sommer speinon, FALL
I New MPX [NOX]
BNC will beobses berpit
DEC will 15500 DSJ

=/NSPS == · SMACK TEST FOR PM Montou for George T will look into exceptions Now NSPS - Crovery thing in formet for some fine I some fine

ASSOCIATED UNIVERSITIES, INC.

Upton, Long Island, New York 11973

(516) 282 FTS 666 2500

February 9, 1990

Plant Engineering

J. Harrington
Bureau of Major Source Review
New York State Department of
Environmental Conservation
50 Wolf Road
Albany, NY 12233-3530

Subject: Brookhaven National Laboratory - Boiler No. 6

Dear Mr. Harrington:

As discussed we have analyzed the fuel consumption of the Laboratory site over the last several years. The analysis begins in FY 1983 which was three years prior to the construction completion of Boiler No. 6.

The first page of the analysis tabulated the type of fuel, percentage of sulfur (by weight), density (1b/gal) and heat value (Btu/gal). The source of the data is also provided. The remaining pages cover fiscal years 1983-1990 and calculate total gallons burned, total site 50 emissions in tons/year and the average sulfur percentage in the fuel burned.

The results indicate that total tons per year of sulfur dioxide emissions from the site have remained relatively constant over the last 7 years:

Fiscal Year	Site SO ₂ (Tons/Yr)	S Ar
1983 (10-1-82 - 9-30-83)	392 420 400	
1984 1985	395 377 349	
1986 1987	ALT 404 376	
1988	386	
1989 1990 (to date)	171	
	22.7	THE YO

romast SAL charade = 315 wills

This time period was selected since it coincides with the initial development of Boiler No. 6. Key dates are:

Design initiated by Stone ad Webster	8-18-83
Boiler No. 6 Purchase Order	11-20-84
General Consti :tion Contract Award	8-13-85
Boiler delivered to BNL	9-24-85
Construction Completed/Boiler Accepted	5-20-87

We hope this data is helpful. We look forward to meeting with you on Tuesday to review our situation in greater detail. As you requested I have also enclosed a site map for your use.

Michael J. Bebon, Manager Plant Engineering Division

MB-070:h1m

cc: W. R. Casey

B. Royce

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

MEMORANDUM

TO:

S. Mohr

FROM:

R. Capp

SUBJECT:

BNL - Boiler #6

DATE:

January 23, 1990

The application for the above boiler must meet the requirements of PSD and NSPS. Under 40 CFR52.21 (PSD) the existing facility is considered major without taking into account the emissions from boiler #6. The SO₂ emissions from existing boilers exceed the 250 t/yr., and the deminimis values for SO₂, NOx and particulates are exceeded.

Unit #6 also comes under 40CFR 60, Subpart Db, which requires a limitation of 0.4#/MBTU for NOx, and 0.2#/MBTU for Particulates.

We will provide the Central Office staff with the pertinent documents so that they are part of the required review.

At this point, the application, in its current submission, must be considered incomplete due to the additional material needed for a PSD review. These items would include, but not be limited to a BACT demonstration, an ambient Air Quality Impact Analysis and possible ambient monitoring.

J. Harrington has agreed to meet with staff from BNL to discuss these requirements if they wish.

RJC:gn

cc: H. Berger

- A. Machlin
- J. Harrington
- H. Roman

ASSOCIATED UNIVERSITIES, INC.

FAX MESSAGE

DATE:

March 7,1990

TO:

Jim Harrington, NYS DEC Source Control

FAX NUMBER: 518-457-0794

FROM:

Marty Fallier, BNL Plant Engineering

FAX NUMBER 516-282-2884

SUBJECT:

Boiler No. 6 Permit to Construct

Draft Proposal of Reporting Requirements for

Emissions Compliance Verification

As discussed in our Telcon earlier today, I have revised the attached "BNL Central Steam Facility Quarterly Air Emissions Report" form to include applicable AP-42 Emissions factors. I trust this information will be sufficient for you to continue the process of issuing a Permit to Construct for Boiler No. 6

A confirming letter from the DOE BHO containing the same information will be forthcoming shortly.

Please give me a call at (516) 282-3475 if you have any questions or require additional information.

MF:

Attachment

cc: M. J. Bebon

W. L. Chaloupka

E. T. Murphy

B. Royce

G. Tsoumpas (SWEC)

File:Blr 6 Permit

Calculation of Annual SO2 Emissions

Input Data:

Fuel	Sulfur	lb/gal	Btu/gal	Reference
Low Sulfur No. 6 Oil	1.0%	8.2	148,000	ASTM D396 / Analysis
High Sulfur No. 6 Oil	2.0%	8.2	150,000	ASTM D396 / Estimated
Mineral Spirits	0.1%	6.5	120,000	Estimated
"Reconstituted No. 6" Oil	2.0%	8.2	145,000	Estimated
Navy Special	2.0%	8.2	150,000	ASTM D396 / Estimated
Alcohol	0.0%	6.7	75,000	Methanol-Ethanol Avg, Marks, p. 6-8
Marine Diesel	1.5%	7.2	142,000	ASTM D975 / Estimated
Jet Fuel / ALF	0.2%	6.8	125,000	ASTM D1655 / Estimated
"Reconstituted No. 4" Oil	2.0%	7.7	142,000	ASTM D396 / Estimated
No. 4 Fuel Oil	1.0%	7.7	142,000	ASTM D396 / Estimated
No. 2 Fuel Oil	0.3%	7.2	138,000	ASTM D396 / Estimated

Other References: Gal Burned from Monthly PE Report titled, "Heating Fuel Consumption"

Calculation of Annual SO2 Emissions

FY 1983

Fuel	Gal Burned	Sulfur	lb/gal	Btu/gal	Total Fuel (lb/yr)	Total Btu/yr	Total S (lb/yr)
Central Steam Facility							
Low Sulfur No. 6 Oil	2,004,482	1.0%	8.2	148,000	16,436,752	2.97E+11	164,368
High Sulfur No. 6 Oil	0	2.0%	8.2	150,000	0	0.00E+00	104,300
Mineral Spirits	823,506	0.1%	6.5	120,000	5,352,789	9.88E+10	5,353
"Reconstituted No. 6" Oil	310,844	2.0%	8.2	145,000	2,548,921	4.51E+10	50,978
Navy Special	165,503	2.0%	8.2	150,000	1,357,125	2.48E+10	27,142
Alcohol	0	0.0%	6.7	75,000	0	0.00E+00	2,,2
Marine Diesel	675,328	1.5%	7.2	142,000	4,862,362	9.59E+10	72,935
Jet Fuel	1,044,155	0.2%	6.8	125,000	7,100,254	1.31E+11	14,201
"Reconstituted No. 4" Oil	287,882	2.0%	7.7	142,000	2,216,691	4.09E+10	44,334
Other	0	1.0%	7.7	142,000	0	0.00E+00	0
Total CSF	5,311,700				39,874,894	7.33E+11	379,311
Other Boilers							
No. 4 Fuel Oil	145,054	1.0%	7.7	142,000	1,116,916	2.06E+10	11,169
No. 2 Fuel Oil	75,491	0.3%	7.2	138,000	543,535	1.04E+10	1,631
Total Other	220,545				1,660,451	3.10E+10	12,800
Site Totals	5,532,245		•		41,535,345	7.64E+11	392,111
Total Site SO2 Emissions							392 Tons/yr
Average S in Fuel by Wgt.							0.9%

Page 2

Date 2/13/90 11:31

File: SO2 Emissions

ETM

Calculation of Annual SO2 Emissions

FY 1984

Gal Burned	Sulfur	lb/gal	Btu/gal	Total Fuel (lb/yr)	Total Btu/yr	Total S (lb/yr)
1,582,369	1.0%	8.2	148,000	12 975 426	2 3/E . 11	129,754
347,664						57,017
858,673						5,581
						38,716
						31,635
0						0 1,000
852,604						92,081
1,405,672						19,117
216,322						33,314
0	1.0%	7.7	142,000	0	0.00E+00	0
5,692,272				42,288,181	7.80E+11	407,215
143.214	1.0%	77	142 000	1 100 740	0.005.40	44.007
			The second secon			11,027
00,000	0.076	1.2	130,000	696,190	1.33E+10	2,089
239,907				1,798,937	3.37E+10	13,116
5,932,179				44,087,118	8.14E+11	420,331
						420 Tons/yr
						1.0%
	1,582,369 347,664 858,673 236,071 192,897 0 852,604 1,405,672 216,322 0 5,692,272 143,214 96,693 239,907	1,582,369 1.0% 347,664 2.0% 858,673 0.1% 236,071 2.0% 192,897 2.0% 0 0.0% 852,604 1.5% 1,405,672 0.2% 216,322 2.0% 0 1.0% 5,692,272 143,214 1.0% 96,693 0.3% 239,907	1,582,369 1.0% 8.2 347,664 2.0% 8.2 858,673 0.1% 6.5 236,071 2.0% 8.2 192,897 2.0% 8.2 0 0.0% 6.7 852,604 1.5% 7.2 1,405,672 0.2% 6.8 216,322 2.0% 7.7 0 1.0% 7.7 5,692,272 143,214 1.0% 7.7 96,693 0.3% 7.2 239,907	1,582,369 1.0% 8.2 148,000 347,664 2.0% 8.2 150,000 858,673 0.1% 6.5 120,000 236,071 2.0% 8.2 145,000 192,897 2.0% 8.2 150,000 0 0.0% 6.7 75,000 852,604 1.5% 7.2 142,000 1,405,672 0.2% 6.8 125,000 216,322 2.0% 7.7 142,000 0 1.0% 7.7 142,000 5,692,272 143,214 1.0% 7.7 142,000 96,693 0.3% 7.2 138,000 239,907	1,582,369 1.0% 8.2 148,000 12,975,426 347,664 2.0% 8.2 150,000 2,850,845 858,673 0.1% 6.5 120,000 5,581,375 236,071 2.0% 8.2 145,000 1,935,782 192,897 2.0% 8.2 150,000 1,581,755 0 0.0% 6.7 75,000 0 852,604 1.5% 7.2 142,000 6,138,749 1,405,672 0.2% 6.8 125,000 9,558,570 216,322 2.0% 7.7 142,000 1,665,679 0 1.0% 7.7 142,000 1,665,679 0 1.0% 7.7 142,000 1,102,748 96,693 0.3% 7.2 138,000 696,190 239,907 1,798,937	1,582,369 1.0% 8.2 148,000 12,975,426 2.34E+11 347,664 2.0% 8.2 150,000 2,850,845 5.21E+10 858,673 0.1% 6.5 120,000 5,581,375 1.03E+11 236,071 2.0% 8.2 145,000 1,935,782 3.42E+10 192,897 2.0% 8.2 150,000 1,581,755 2.89E+10 0 0.0% 6.7 75,000 0 0.00E+00 852,604 1.5% 7.2 142,000 6,138,749 1.21E+11 1,405,672 0.2% 6.8 125,000 9,558,570 1.76E+11 216,322 2.0% 7.7 142,000 1,665,679 3.07E+10 0 1.0% 7.7 142,000 1,102,748 2.03E+10 5,692,272 42,288,181 7.80E+11 143,214 1.0% 7.7 142,000 1,102,748 2.03E+10 96,693 0.3% 7.2 138,000 696,190 1.33E+10 239,907 1,798,937 3.37E+10

Page 3

Date 2/13/90 11:31

File: SO2 Emissions

ETM

Calculation of Annual SO2 Emissions

Fuel	Gal Burned	Sulfur	lb/gal	Btu/gal	Total Fuel (lb/yr)	Total Btu/yr	Total S (lb/yr)
Central Steam Facility							
Low Sulfur No. 6 Oil	1,000,103	1.0%	8.2	148,000	8,200,845	1.48E+11	82,008
High Sulfur No. 6 Oil	203,383	2.0%	8.2	150,000	1,667,741	3.05E+10	33,355
Mineral Spirits	949,652	0.1%	6.5	120,000	6,172,738	1.14E+11	6,173
"Reconstituted No. 6" Oil	86,841	2.0%	8.2	145,000	712,096	1.26E+10	14,242
Navy Special	854,608	2.0%	8.2	150,000	7,007,786	1.28E+11	140,156
Alcohol	0	0.0%	6.7	75,000	0	0.00E+00	0
Marine Diesel	561,123	1.5%	7.2	142,000	4,040,086	7.97E+10	60,601
Jet Fuel	1,949,512	0.2%	6.8	125,000	13,256,682	2.44E+11	26,513
"Reconstituted No. 4" Oil	109,680	2.0%	7.7	142,000	844,536	1.56E+10	16,891
Other	62,891	0.3%	7.2	138,000	452,815	8.68E+09	1,358
Total CSF	5,777,793				42,355,323	7.81E+11	381,297
Other Boilers							
No. 4 Fuel Oil	142,053	1.0%	7.7	142,000	1,093,808	2.02E+10	10,938
No. 2 Fuel Oil	113,895	0.3%	7.2	138,000	820,044	1.57E+10	2,460
Total Other	255,948		*		1,913,852	3.59E+10	13,398
Site Totals	6,033,741				44,269,176	8.17E+11	394,696
Total Site SO2 Emissions							395 Tons/yr
Average S in Fuel by Wgt.							0.9%

Calculation of Annual SO2 Emissions

Fuel	Gal Burned	Sulfur	lb/gal	Btu/gal	Total Fuel (lb/yr)	Total Btu/yr	Total S (lb/yr)
Central Steam Facility							
Low Sulfur No. 6 Oil	2,095,627	1.0%	8.2	148,000	17,184,141	3.10E+11	171,841
High Sulfur No. 6 Oil	31,094	2.0%	8.2	150,000	254,971	4.66E+09	5,099
Mineral Spirits	484,995	0.1%	6.5	120,000	3,152,468	5.82E+10	3,152
"Reconstituted No. 6" Oil	1,546	2.0%	8.2	145,000	12,677	2.24E+08	254
Navy Special	232,136	2.0%	8.2	150,000	1,903,515	3.48E+10	38,070
Alcohol	0	0.0%	6.7	75,000	0	0.00E+00	0
Marine Diesel	748,471	1.5%	7.2	142,000	5,388,991	1.06E+11	80,835
Jet Fuel	1,727,006	0.2%	6.8	125,000	11,743,641	2.16E+11	23,487
"Reconstituted No. 4" Oil	92,066	2.0%	7.7	142,000	708,908	1.31E+10	14,178
CSF No. 2 Fuel Oil	159,793	0.3%	7.2	138,000	1,150,510	2.21E+10	3,452
Total CSF	5,572,734				41,499,822	7.65E+11	340,369
Other Bollers							
No. 4 Fuel Oil	81,645	1.0%	7.7	142,000	628,667	1.16E+10	6,287
No. 2 Fuel Oil	114,948	0.3%	7.2	138,000	827,626	1.59E+10	2,483
Total Other	196,593	,			1,456,292	2.75E+10	8,770
Site Totals	5,769,327				42,956,114	7.93E+11	349,139
Total Site SO2 Emissions							349 Tons/yr
Average S in Fuel by Wgt.							0.8%

Calculation of Annual SO2 Emissions

FY 1987	REVISED						
Fuel	Gal Burned	Sulfur	lb/gal	Btu/gal	Total Fuel (lb/yr)	Total Btu/yr	Total S (lb/yr)
Central Steam Facility							
Low Sulfur No. 6 Oil	3,853,999	1.0%	8.2	148,000	31,602,792	5.70E+11	316,028
High Sulfur No. 6 Oil	56,892	2.0%	8.2	150,000	466,514	8.53E+09	9,330
Mineral Spirits	278,886	0.1%	6.5	120,000	1,812,759	3.35E+10	1,813
"Reconstituted No. 6" Oil	5,838	2.0%	8.2	145,000	47,872	8.47E+08	957
Navy Special	61,477	2.0%	8.2	150,000	504,111	9.22E+09	
Alcohol	0	0.0%	6.7	75,000	0	0.00E+00	10,082
Marine Diesel	438,354	1.5%	7.2	142,000	3,156,149	6.22E+10	0 47,342
Jet Fuel	763,516	0.2%	6.8	125,000	5,191,909	9.54E+10	10,384
"Reconstituted No. 4" Oil	13,813	2.0%	7.7	142,000	106,360	1.96E+09	2,127
CSF No. 2 Fuel Oil	2,678	0.3%	7.2	138,000	19,282	3.70E+08	58
Total CSF	5,036,284				42,907,748	7.82E+11	398,122
Other Boilers							
No. 4 Fuel Oil	138,418	1.0%	7.7	142,000	1,065,819	1.97E+10	10,658
No. 2 Fuel Oil	81,226	0.3%	7.2	138,000	584,827	1.12E+10	1,754
Total Other	219,644	ê			1,650,646	3.09E+10	12,413
Site Totals	5,255,928				44,558,393	8.13E+11	410,534
Total Site SO2 Emissions							411 Tons/yr
Average S in Fuel by Wgt.							0.9%

Calculation of Annual SO2 Emissions

Fuel	Gal Burned	Sulfur	lb/gal	Btu/gal	Total Fuel (lb/yr)	Total Btu/yr	Total S (lb/yr)
Central Steam Facility							
Low Sulfur No. 6 Oil	4,723,244	1.0%	8.2	148,000	38,730,601	6.99E+11	387,306
High Sulfur No. 6 Oil	0	2.0%	8.2	150,000	0	0.00E+00	0
Mineral Spirits	0	0.1%	6.5	120,000	0	0.00E+00	0
"Reconstituted No. 6" Oil	0	2.0%	8.2	145,000	0	0.00E+00	0
Navy Special ·	0	2.0%	8.2	150,000	0	0.00E+00	. 0
Alcohol	0	0.0%	6.7	75,000	0	0.00E+00	0
Marine Diesel	0	1.5%	7.2	142,000	0	0.00E+00	0
Jet Fuel	294,777	0.2%	6.8	125,000	2,004,484	3.68E+10	4,009
"Reconstituted No. 4" Oil	0	2.0%	7.7	142,000	0	0.00E+00	0
CSF No. 2 Fuel Oil	18,263	0.3%	7.2	138,000	131,494	2.52E+09	394
Total CSF	5,036,284				40,866,578	7.38E+11	391,709
Other Boilers							
No. 4 Fuel Oil	101,952	1.0%	7.7	142,000	785,030	1.45E+10	7,850
No. 2 Fuel Oil	88,457	0.3%	7.2	138,000	636,890	1.22E+10	1,911
Total Other	190,409				1,421,921	2.67E+10	9,761
Site Totals	5,226,693			•	42,288,499	7.65E+11	401,470
Total Site SO2 Emissions							401 Tons/yr
Average S in Fuel by Wgt.							0.9%

Calculation of Annual SO2 Emissions

Fuel	Gal Burned	Sulfur	lb/gal	Btu/gal	Total Fuel (lb/yr)	Total Btu/yr	Total S (lb/yr)
Central Steam Facility							
Low Sulfur No. 6 Oil	4,519,664	1.0%	8.2	148,000	37,061,245	6.69E+11	370,612
High Sulfur No. 6 Oil	0	2.0%	8.2	150,000	0	0.00E+00	0
Mineral Spirits	0	0.1%	6.5	120,000	0	0.00E+00	0
"Reconstituted No. 6" Oil	0	2.0%	8.2	145,000	0	0.00E+00	0
Navy Special	. 0	2.0%	8.2	150,000	. 0	0.00E+00	0
Alcohol	0	0.0%	6.7	75,000	0	0.00E+00	0
Marine Diesel	0	1.5%	7.2	142,000	0	0.00E+00	0
Alternate Liquid Fuel	677,597	0.2%	6.8	125,000	4,607,660	8.47E+10	9,215
BNL Recovered	11,863	2.0%	7.7	142,000	91,345	1.68E+09	1,827
CSF No. 2 Fuel Oil	5,117	0.3%	7.2	138,000	36,842	7.06E+08	111
Total CSF	5,214,241				41,797,092	7.56E+11	381,765
Other Boilers							
No. 4 Fuel Oil	12,882	1.0%	7.7	142,000	99,191	1.83E+09	992
No. 2 Fuel Oil	171,193	0.3%	7.2	138,000	1,232,590	2.36E+10	3,698
Total Other	184,075				1,331,781	2.55E+10	4,690
Site Totals	5,398,316				43,128,873	7.81E+11	386,455
Total Site SO2 Emissions							386 Tons/yr
Average S in Fuel by Wgt.							0.9%

Calculation of Annual SO2 Emissions

FY 1990	TO DATE						
Fuel	Gal Burned	Sulfur	lb/gal	Btu/gal	Total Fuel (lb/yr)	Total Btu/yr	Total S (lb/yr)
Central Steam Facility							
Low Sulfur No. 6 Oil	2,052,747	1.0%	8.2	148,000	16,832,525	3.04E+11	168,325
High Sulfur No. 6 Oil	0	2.0%	8.2	150,000	0	0.00E+00	0
Mineral Spirits	0	0.1%	6.5	120,000	0	0.00E+00	o o
"Reconstituted No. 6" Oil	0	2.0%	8.2	145,000	0	0.00E+00	Ö
Navy Special	0	2.0%	8.2	150,000	0	0.00E+00	Ö
Alcohol	0	0.0%	6.7	75,000	0	0.00E+00	0
Marine Diesel	0	1.5%	7.2	142,000	0	0.00E+00	Ö
Alternate Liquid Fuel	27,869	0.2%	6.8	125,000	189,509	3.48E+09	379
BNL Recovered	354	2.0%	7.7	142,000	2,726	5.03E+07	55
CSF No. 2 Fuel Oil	353	0.3%	7.7	142,000	2,718	5.01E+07	8
Total CSF	2,081,323				17,027,479	3.07E+11	168,767
Other Boilers							
No. 4 Fuel Oil	0	1.0%	7.7	142,000	0	0.00E+00	0
No. 2 Fuel Oil	94,922	0.3%	7.2	138,000	683,438	1.31E+10	2,050
Total Other	94,922				683,438	1.31E+10	2,050
Site Totals	2,176,245				17,710,917	3.20E+11	170,817
Total Site SO2 Emissions							171 Tons/yr
Average S in Fuel by Wgt.							1.0%